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Abstract— Precision agriculture is the key to sustainable
farming. The usage of autonomous robotics systems in agricul-
ture is rising. Similar to other mature areas of applied robots,
agricultural robots must be able to robustly navigate in their
working places (polytunnel, crop fields, etc.,). In horticulture,
row following is one of the key tasks that autonomous agricul-
tural robots must perform. Several studies had been done to
address this problem. However, existing methods are tailored
to their specific environments. This work aims to provide
a CNN approach to row following tasks that can be used
for both indoor (polytunnel-liked) and outdoor (orchard-liked)
environments.

I. INTRODUCTION AND MOTIVATION

A common practice for growing vegetation in horticulture
is to form row-like structures. For outdoor environment,
orchards mostly use row-liked structures for growing. For
fruits such as apples and oranges, the most common row
structure is a tree wall, e.g a row is formed by placing
trees on both sides of a path. However, for fruits such as
grapes, pears and kiwi, a pergola structure is more common.
In a pergola, rows are formed by trees and supporting poles.
For indoor environment such as polytunnel, rows are formed
either by lines of table-trays placing on poles or being hung
from the roof. We show three examples of polytunnel, open
orchard and pergola in Fig. 1, respectively.

For open fields like orchards, classical navigation methods
relying on external position sensors such as GNSS were
fully developed [2]. For greenhouses or polytunnels, existing
navigation methods from the robotics community using a 2D
laser scanner can be directly applied [3]. Obviously, these
classical methods may suffer in some specific conditions:
blockage of GNSS signals (in pergolas where dense canopies
usually exist), uneven ground floor distorts 2D laser scanner,
or in case of missing trees in a row (Fig. 1c) might also
confuse the laser scanner reading. Several works have been
done to address these problems, which specifically avoid
using any external position sensor or assuming a flat terrain.
Zhang et al. in [4] used a rotating 2D laser scanner for
augmenting 3D scans to detect tree trunk and traverse along
tree rows in an orchard. Bell et al. in [5] propose a navigation
approach using a 3D LiDAR sensor to navigate inside a
kiwifruit pergola, where GNSS signals are blocked by dense
canopies.

We are motivated by the structural variations that we have
in our test fields at NMBU. We have a strawberry polytunnel,
in which three rows of tabletop trays are placed on poles.
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(a) A strawberry polytunnel

(b) An open orchard

(c) A kiwifruit orchard with pergola structure. Image courtesy of [1]

Fig. 1: Different types of horticultural environments.



(a) Trees with supporting poles (b) Plant bushes with supporting poles (c) A row with missing trees

Fig. 2: Different types of orchard environments at NMBU.

The row width is 1.5 meters (Fig. 1a). On the other hand, we
have an open orchard where three different types of structure
are utilized: a) standard rows, where trees are roughly spaced
2 meters apart, as shown in Fig. 1b, b) trees with supporting
poles, which are roughly 2 meters apart, as shown in Fig. 2a,
c) small trees with large supporting poles, where poles are
roughly 2.3 meters apart, as shown in Fig. 2b. On some rows,
one tree or several trees might be missed as shown in Fig 2c.
The row width in our orchard is much wider than the one in
our polytunnel. Moreover, different types of row following
tasks may be performed on these environments. For example,
UV light treatment in polytunnel or tree watering on orchards
are classified as centerline following tasks, meaning a robot
needs to maintain equidistant to both sides. An example of
centerline following in UV light treatment in a polytunnel is
shown in Fig. 3.

Fig. 3: A design of Thorvald robot for UV line treatment inside a
polytunnel. The robot is required to perform centerline following.

For orchard with a wide row in harvesting season, a robot
may need to stay close to one side of a row while moving
along that row for fruit harvesting. This is classified as
sideline following task.

We are inspired by the work of Bell et al. in [6], in which
the authors trained a fully convolutional neural network

(FCN) for segmenting drivable areas for row following in
a kiwifruit pergola. Drivable area means the area a robot can
translate to from its current position without collision. We
believe this approach is more generic and applicable than
existing methods relying on external position sensor (high
cost for RTK-GNSS devices), artificial landmarks (burden on
infrastructure for placing and maintaining) or laser scanner
sensor (being confused in the presence of missing/additional
objects). More over, it uses a low-cost camera sensor, which
keeps the whole robotic system cost-efficient.

We argue that our work is different from the one in [6] by
a magnitude of generalization. The authors in [6] were only
concerned about centerline following for harvesting tasks in a
specific kiwifruit pergola. We train our network for segment-
ing traversable ground on an inclusive dataset containing
both indoor (a strawberry polytunnel) and outdoor (orchards
with three different types of row structure) environment.
We also cross-validate our network performance on different
network architectures, including ResNet [7], Darknet [8],
MobileNet [9] and ERFNet [10]. Hence, we can evaluate
how our network performs in different types of environments
with different network architectures. In addition, for outdoor
environment, we also have three different types of structure.
Hence, our network is suitable for many types of environ-
ment, which makes it more generic.

II. DESCRIPTION OF DATASET AND TRAINING PROCESS

For data collection, we use a popular Intel Realsense Cam-
era D435i. We mount the Realsense camera on our ground
robot [11] as shown in Fig. 4. We manually joystick the
robot along rows in our strawberry polytunnel and our open
orchard. We made sure to capture as many different scenarios
as possible: a) our strawberry polytunnel recordings contain
our robot moving along rows with in-row rotations that are
not considered dangerous b) for our open orchard, our robot
undergoes different moving directions while traversing rows
- straight line, rotating, diagonally c) data is being recorded
under various light conditions.

We select 500 images of size 640x480 pixels for training
and 57 held out images of the same size for testing. For label-
ing images, we manually label each pixel either traversable
or non-traversable. The human expert who controlled the
robot during data collection decides which pixel areas can be



Fig. 4: Robot setup for data collection.

considered traversable. The human expert follows a similar
definition of “traversable” as in [6], in which traversable area
is defined as a space that the robot might get to from its
current position by following a straight line and without
collisions. This definition means that in cases, where the
robot can observe several rows from its current position,
the network should not classify neighbor row areas as
traversable. We train our network using the training tool
in [12] with a Zotac Mini Gaming PC equipped with an
Nvidia Geforce GTX 1070K, 16GB memory, and a quad-
core Intel i5-7500T CPU. A sample architecture based on
ERFNet, which we use, is shown in Fig. 5.

We also show examples of annotated data that we use for
training in Fig. 6.

III. EXPERIMENTAL RESULTS AND DISCUSSIONS

A. Results

We report our training results, including types of network
architecture, the average accuracy (mAcc), mean Jaccard
index (mIoU), and the mean Jaccard index of “traversable”
class (mIoU of class 1) in Table I. Note that for each network,
we average the results of the best three trained models and
report those values. As illustrated in Fig. 7, our trained
network is able to segment traversable areas, which is the part
of a row our robot is currently in and can safely translates to
without collisions. Some test results including corner cases
are presented in Fig. 7, where the network correctly ignores
“traversable” areas of neighbor rows. Note that in case of a
row with missing trees as in Fig. 7d, we explicitly do not
want our robot to make a cross movement to a neighbor row,
even it is safe to do so in this case. Obviously, for indoor
environment, we do not want our robot to make any cross
movement from one row to another. Our trained network
was able to correctly identify the traversable areas inside
our polytunnel (Fig. 7j-k).

We also report the average inference time (Infer. time) per
image in milliseconds by each architecture when interfacing
in ROS in Table I. From experiments, we see that ERFNet
gives us the fastest inference time at roughly 48 ms, which

Architecture mAcc mIoU mIoU of class 1 Infer. time
ResNet 18 0.986 0.941 0.899 ∼ 54ms
ResNet 50 0.987 0.946 0.906 ∼ 142ms
ResNet 152 0.985 0.939 0.895 ∼ 190ms
Darknet 21 0.985 0.938 0.892 ∼ 118ms
Darknet 53 0.987 0.947 0.908 ∼ 206ms

ERFNet 0.986 0.941 0.898 ∼ 48ms
MobileNet V2 0.984 0.935 0.888 ∼ 55ms

TABLE I: Training results

is approximately 20Hz. The slowest FPS is reported at
approximately 5Hz using Darknet 53. Since our robot moves
at a relatively low speed of 0.7 m/s, this inference rate is
sufficient for row following performances. We do not observe
significant differences in segmentation accuracy between
different network architectures. Hence, it is up to an end-
user to select a specific network architecture.

B. Discussions

Currently, we have two main drawbacks in our work:

• We only consider traversable areas for in-row move-
ments. We observe that headland areas are much dif-
ferent from in-row areas. Incorporating headland into
our current network actually worsens its performance.
Hence, we leave between-rows transition as a separate
problem to solve.

• Ground truth determination is our bottleneck. Relying
on a human expert for ground truth labeling is time-
consuming and error-prone. However, to our knowledge,
there are not any publicly available data sets that we can
use for training or compare with. We envision a good
ground truth that must come from professional terrain
surveying services, for which we plan to do in the future.
Nonetheless, we want to stress at the current state, our
network can accurately segment traversable areas on par
with a human expert.

IV. CONCLUSIONS

In this work, we propose a supervised learning solution for
row following tasks in horticulture. Using a low cost camera,
our solution is suitable for a wide range of agricultural
robots. We present our approach to collect and train a con-
volutional neural network for segmenting traversable areas,
which can be subsequently used for motion planning. We
show that our trained networks (based on different network
architectures) are well generalized to different environments
than existing methods. We also show that the inference time
of our network is sufficiently fast for motion planning tasks.
For future work, we plan to achieve a professional ground
truth data for labeling traversable area using terrain surveying
services and release our data set to our agricultural robotics
community.
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Fig. 5: An illustration of a network architect that we use. This is similar to the structure of ERFNet in [10]. Red layers - downsample
module, Yellow layers - variable receptive field, Purple layers - upsample module.

(a)

(b)

Fig. 6: Screenshots of annotated images for training, where red
areas depict traversable areas.
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Fig. 7: Segmentation test results. Best viewed in color.


