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Abstract— This work proposes a short or medium-term alter-
native to complete automation of the manual harvesting process
by introducing a team of robotic N-trailer vehicles to support
the crop transportation task. Since the use of multiple vehicles
working in the same workspace implies their coordination,
this work proposes a high-level planning strategy that allows
coordinating the routes of every vehicle. The proposed strategy
includes a harvesting sequence generation and an initial route
planning, both based on centralized global information, but
also an online route planning based on decentralized local
information exchanged between vehicles. Moreover, the pro-
posal includes a vehicles departure scheduler which aims to
maintain a harvesting operation without interruptions. In order
to make the planning strategy robust against the variability on
the harvesting rate and the uncertainties about the actual yield
per track, the global information is updated online based on
local information from the vehicles.

I. INTRODUCTION

For the past few years, mobile robotics and automation
technologies have been successfully integrated in agricultural
processes [1]. Most of the literature has focused on optimiz-
ing fully automated operations such as seeding, spraying,
monitoring, and grain harvesting operations [2]–[4]. How-
ever, in specialty crop harvesting, the developed robots have
not successfully replaced yet the judgment, dexterity, and
speed of experienced pickers [5]. In this context, rather than
fully automating the harvesting task and thus replacing hand
picking, it is more worth to automate crop transportation in
order to create a semi-automatic harvesting system that takes
advantage of both human dexterity and automated trans-
portation efficiency. Recent works [5], [6], have presented
solutions for this problem by using a team of small robots
moving next to the pickers along the tracks, collecting the
harvested crop into small containers, and then transporting
the filled containers to a collection station. However, since
small robots have a limited payload capacity, their use is
also limited to specific kinds of crops such as strawberries,
raspberries, or table grapes. On the other hand, in the case of
harvesting of apple, peers, or avocados, it is preferred the use
of tractor-trailer systems, a.k.a. N-trailer vehicles to transport
big containers and improve harvesting efficiency. Despite its
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scalable payload capacity, the use of an N-trailer vehicle
introduces specific maneuverability constraints which should
be considered during the route planning as was recently
presented in [7].

In this context, this paper proposes for the first time a
high-level route planning strategy to supervise a team of
robotic N-trailer vehicles during manual harvesting opera-
tions. In contrast with centralized (off-line) route planning
approaches such as [2], [4], the proposed strategy considers
a combination of global planning that produces initial routes
using a priori knowledge of the workspace, but also local
planning that recalculates routes according to new informa-
tion available about changes in the workspace and harvesting
rate. The proposed route planning strategy is complemented
by i) a field division into areas, ii) optimal temporary deposit
location, iii) a scheduler to determine the vehicles time
departures in order to reduce non-productive times, and iv) a
harvesting sequence generator which considers the expected
yield per track covered, and maneuverability constraints
related with the number of trailers towed.

The remainder of paper is organized as follows. Section 2
presents the background and problem description. Section 3
describes the proposed strategy. Section 4 shows preliminary
results obtained through simulations. Section 5 presents the
conclusions.

II. PROBLEM STATEMENT

A. Harvesting procedure for hand-picked fruits

In general, the manual harvesting process can be split
into two main tasks: i) picking and placing the fruit into
containers (e.g. a basket, tray, bag, or bin), and ii) collecting
the filled containers and transporting them to a collection
station [8], [9]. According to the fragility of crop to be
harvested, the capacity of the container used vary. In the case
of strawberries, raspberries, blackberries, and table grapes,
small trays are preferred to maintain good product quality
and reduce the damage during their transportation [8]. These
small trays allow the use of small robots as was presented
in [5], [6]. On the other hand, in the case of fruits such as
apples, pears, oranges, and avocados, large capacity bins are
preferred to load more fruit, but they are generally too big to
be transported by small robots or pickers. This latter case is
addressed in this paper where bigger machinery is required
to transport the bins to the collection station.

B. N-trailer vehicles in harvesting operations

Since the use of heavy machinery produces negative
effects on the soil properties, and the space between tree rows
is narrow, the machinery used for fruit harvesting operations



is generally based on sub-compact or compact tractors. These
tractors have enough payload capacity to tow trailers with
more than one bin. According to the harvesting strategy
chosen, the tractor tows a different kind and number trailers
as follows:

1) Stationary loading: In this strategy, the empty bins are
distributed to the field before the harvest begins. During the
harvesting operation, the filled bins are collected by tractors
towing a hydraulic bin trailer that collect and transport the
bins. Since the space between rows, a.k.a. tracks, is too
narrow for the vehicle to move next to the bins, this strategy
requires that the vehicle enters the track, picks up the bin, and
exits in the opposite direction. This implies that the driver
requires to drive a tractor-trailer system in backward motion,
which complicates the driving task [10], limiting this strategy
to use a single large trailer which can collect up to four
bins [8]. Furthermore, this strategy introduces excessive soil
compaction since it requires the vehicle to travel the same
track several times until all the bins are collected.

2) On-the-go loading: As is illustrated in Fig. 1, in this
strategy, the pickers place the harvested fruit directly into
bins placed on passive trailers pulled by a tractor which
is moving next to the pickers at speeds dictated by the
group harvesting rate. Since there are no bins along the
track obstructing the path of the vehicles, backward motion
is not required, thus this loading strategy allows: i) the tractor
to tow an arbitrary number of trailers (limited only by the
payload capacity of the tractor), ii) to complete a track in
a single trip if the total payload capacity of the tractor-
trailer system is enough. This class of tractor-trailer system
is also called N-trailer and it is characterized by having a
scalable payload capacity, but due to the passive nature of
the hitches between trailers, a collision risk appears during
turning maneuvers. According to [7], a simple solution to
reduce the risk of collision is to limit the turning radius of
the N-trailer vehicle during harvesting sequence planning in
order to restrict the transitions between contiguous tracks.

C. Harvesting scheduling problem

In this paper, on-the-go loading is assumed for the har-
vesting process because it allows using N-trailer vehicles.
In this mode of operation, it is important to always have
a N-trailer vehicle moving next to the group of pickers to
maintain continuous harvesting. Despite the N-trailer vehicle
has a scalable payload capacity, it is still finite, therefore the
vehicle has to interrupt the operation for unloading the filled
bins at a collection station and then resume the harvesting
by towing empty bins [1].

Harvesting operations without interruptions are possible
by having a perfect knowledge of the harvesting rate to
determine when exactly a N-trailer full of load should
be replaced by another one with empty bins. However,
in a semi-automatic harvesting process with manual pick-
ing, picker performance, yield density, and random effects
cause the harvesting rate to vary in dynamic and non-
deterministic ways. Recent works, such as [5], [6], have
presented interesting solutions to capture the variability in

Fig. 1. a) N-trailer vehicle transporting the bins along the tracks, b)
Workers picking and placing the harvested fruits into the trailers bins.
(Photos courtesy of Fruiture Advisors, SL)

human behavior and performance during harvesting. The hu-
man activity model utilizes stochastic variables (e.g., picking
time, walking speed) that can be estimated by measurements
during harvesting. These estimated variables are important
for predictive scheduling of transporting harvest-aid robots
where a central computer acts as a supervisory controller,
which computes the assignments of robots to pickers and
the timing of robots departures [6].

III. PROPOSED STRATEGY

This paper proposes a cooperative route planning strategy
for a team of N-trailer vehicles to improve the efficiency
of semi-automatic harvesting operations. To this aim, the
following assumptions and conditions are considered:

• The a priori information include: the availability of
machinery and workers, a 2D Euclidean representation
of the field, and estimations about the pickers harvesting
rate and expected yield per track.

• There is a temporary deposit (TD) where every vehicle
must start each run (towing trailers with empty bins)
and finish it (towing trailers with filled bins).

• There is enough number of tractors and trailers to have
at least one active N-trailer vehicle working and a
backup N-trailer vehicle waiting at the TD for schedul-
ing purposes.

• Every tractor has the necessary equipment to allow
the N-trailer system to navigate in an autonomous
way without collisions, compute local planning, and
communicate with other entities.

• The passive trailers have the necessary equipment to
estimate their load and orientation.

• There is a static central computer (CC) located in the
TD which computes global planning and communicates
with the vehicles.



Fig. 2. General architecture of the proposed route planning strategy using global and local information.

• The communications between two entities are allowed
within a limited range.

• The field is divided into areas where each area is
assigned to a specific group of pickers supported by
an N-trailer vehicle.

• The group of pickers must follow the harvesting se-
quence dictated by the route plan of the vehicles.

• The field tracks must be parallel, there must be exactly
two opposite headlands were turnings are executed, and
there must be at least a main way contiguous to the field
(left or right side).

Thus, based on the previous assumptions, Figure 2 shows
in a general way the architecture of the proposed strategy.
The scheme highlights in bold the entities that intervene in
the cooperation problem. These entities include the CC and
vehicles separated into four operation stages, from being an
active vehicle (AV) to becoming a backup vehicle (BV). The
scheme also differentiates computational processes (solid
lines) from data (dashed lines). It is important to note
that there are four types of data structures used by entities
(detailed on the right side of the diagram). According to the
entity which stores the data, it can be treated as global or
local information.

To address the uncertainties about the workspace during
the harvesting operation, the global information used by the
CC is continuously updated with the local information from
the vehicles whenever a AV returns to the TD to unload filled
bins. The updated version of the global information is then
used for harvesting sequence generation, vehicle route plan-
ning, and BVs scheduling. Once a BV becomes an AV, it can
exchange its local information (vehicles positions and route
plans) with other nearby vehicles to ensure collision-free
navigation between vehicles. When a vehicle has finished
the planned harvesting sequence, it starts a route planning
process to return to the TD by using its local information.
During this local planning, the vehicle can obtain additional
local information from other nearby vehicles as long as they
are into the communication range.

The main components of the proposed strategy are de-
scribed in detail in the following subsections.

A. Field division into areas

Before starting the harvesting operation, the proposed
strategy requires dividing the field into areas, each of which
will be harvested by a specific group of pickers. To this aim,
the total number of vehicles available Nv is divided into
two groups such as Nv = Nav + Nbv , where Nav is the
number of AVs which are supporting the pickers, and Nbv

is the number of the BVs which are waiting at the TD to
resume the operation of the AVs. Then, the number of areas
Na is assigned according to the number of AVs such that
Na = Nav . To ensure a continuous harvesting operation,
it is suitable to assign the same number of AVs than BVs,
but due to the economic cost of requiring as many vehicles,
it is expected to have least a BV at the beginning of the
harvesting process. Each time a AV returns to the TD, the
distribution of vehicles is updated such that Nav := Nav−1
and Nbv := Nbv + 1.

B. Grid-based representation of the field

Let T = {1, 2, 3, . . . } be the ordered set of the track
indexes where the value of the track indexes increases
towards the positive direction of the x-axis. Then, as it is
illustrated in Fig. 3, the field can be represented as a 2D grid
where each grid point has integer coordinates of the form
(i, j), being i ∈ T and j ∈ {−1, 0, 1}. More specifically,
the upper headland corresponds to the grid points with
coordinates (i, 1), the lower headland corresponds to the grid
points with coordinates (i,−1), while the crop area of track
i corresponds to the grid point with coordinates (i, 0). This
grid-based representation can be applied to both convex and
non-convex fields [11]. If each grid point denoted by si,j
is considered as a state, then, the states space, that is the
countable set of all states, is given by:

S =
⋃

j={−1,0,1}

(i, j), i ∈ T (1)

C. Temporary deposit location

The selection of the TD location is an important factor that
influences the harvesting process efficiency since according
to its location, the times and distances traveled by the



Fig. 3. Grid-based representation of the field showing an example of the multiple N-trailers route planning during manual harvesting operations (dimensions
are not scaled for the purpose of illustration).

vehicles to unload filled bins may vary [3]. Thus, in order
to minimize the total distance traveled by the N-trailers, we
propose to solve the following optimization problem:

argmin
(i,j) ∈ S

∑
n∈T

∑
m∈{−1,1}

‖ln,m − li,j‖ pn (2)

where, the resulting coordinates (i, j) represents the optimal
location of the TD in the 2D grid world, li,j represents the
coordinates of the grid point si,j in a 2D Euclidean world,
pi represents the expected yield of the ith track, and j = 0 is
excluded from the solution to ensure that the TD is located
at the headlands.

D. Harvesting sequence generation

The pickers motion direction determines which headland
(upper or lower) is used by the vehicles to enter the tracks.
Thus, the aim of the harvesting sequence generation is to
compute route patterns that match with the motion direction
of the pickers. The N-trailer capability to make transitions
at headlands is constrained by the number of trailers cho-
sen following the methodology in [7]. Then, knowing the
transition constraint and the payload capacity of the set of
trailers, the sequence generator seeks to choose a route that
ends in the same headland as the TD. In the case that the last
traversed track was non-completely harvested, the harvesting
sequence of the BV will complete that track, having as a
condition to enter the track using the motion direction of the
pickers. Figure 4 shows the grid maps used to generate the
sequences presented in the example of Fig. 3. The number
of trailers used on each run of A3 is different since it is
determined according to the expected yield to be covered
on each sequence. Furthermore, it is important to notice that
sequences end in the same headland as the TD, and that
the starting points of each run respect the pickers motion
direction. During the sequence generation process, the main
way, headlands, and non-completely harvested tracks are
considered as free regions (white grids) to move. On the
other hand, tracks that do not belong to the assigned area,
and tracks completely covered, are considered as restricted

Fig. 4. Grip maps representing the harvesting sequence generation when:
a-c) A3 is fully-covered in 3 runs; d) A2 is fully-covered in a single run.

regions (gray grids). The example in Fig. 4a shows a special
case where following the methodology presented in [7], the
transition from track 9 to 8 is not allowed for a 3-trailer
vehicle, then, to reduce the collision risk during headland
turning, track 8 is restricted during the sequence generation.

E. Vehicle route planning

Route planning can be computed by both the CC (using
global information) and by the on-board computer of each
tractor (using local information). The route planner using
global information generates the initial route that the vehicle
at the TD follows to reach the starting point of the harvesting
sequence planned for that run. Examples of this route plan-
ning are shown in Fig. 5b-d. On the other hand, the grid map
in Fig. 5a shows an example of the route planning based on
local information where the starting point is the last point
of the planned harvesting sequence and the goal is the TD.
The grid-maps in Fig. 5 correspond to the planned routes
presented in the example of Fig. 3.

The route planning algorithm is based on the well-



known Geometric Goal Directed Search (A∗) [12]. This
algorithm aims to determine a sequence of states R =〈
sI , · · · , ski,j , s

k+1
i,j , · · · sG

〉
, which represents the shortest

route from the initial point (vehicle position into the grid)
denoted by sI ∈ S to the given goal sG ∈ S. The
A∗ algorithm evaluates each possible elements of R by
combining the cost of moving from the state ski,j to sk+1

i,j

denoted by h(sk+1
i,j ), and the cost to get from sk+1

i,j to the
goal sG denoted by g(sk+1

i,j ). The total cost f = h + g is
calculated for each possible successor sk+1

i,j and the state with
the smallest f(sk+1

i,j ) is selected as a successor. In this work,
the cost h(sk+1

i,j ) has been modified from the traditional
version to minimize not only the distance traveled but also
the soil compaction (product of traveling on a track more
than once). To this aim, the evaluation of possible successors
sk+1
i,j is done by computing the following total cost function:

f(sk+1
i,j ) =

∥∥lki,j − lk+1
i,j

∥∥ (1 + tk+1
i,j )︸ ︷︷ ︸

h(sk+1
i,j )

+
∥∥lk+1

i,j − lsG
∥∥︸ ︷︷ ︸

g(sk+1
i,j )

, (3)

where, superindexes k and k + 1 denote the current state
and the possible successor, respectively, lsG are the co-
ordinates of the goal sG in a 2D Euclidean world, and
tk+1
i,j ∈ {0, 1, 2, · · · } represents the number of times that

a successor have been traversed before. Finally, the optimal
route R to travel from sI to sG is constructed with the set
of successors that minimized the total cost (3). If only the
distance traveled criterion is considered, then, the gray route
in the example Fig 5a would correspond to the optimal route.
But, when including the soil compaction criterion, the red
route becomes the optimal route since the cost h includes
a penalty term that increases the value of h according to
the number of times that the possible successor has been
traveled before. This penalization is affecting only possible
successors that belong to crop areas, i.e. headlands and main
way are not penalized such that tk+1

i,j = 0 for j 6= 0.
As shown in the grid maps of Fig. 5, the headlands, the

main way, and the tracks already covered can be considered
as possible successors, while the tracks that do not belong
to the area assigned to the vehicle, and the tracks that
have not yet been harvested, are considered as obstacles.
It is important to highlight that when vehicles are within
their communication range, their local information can be
exchanged and generates a grid map with fewer restrictions,
as it is shown in Fig. 5 where the track 4 is also considered
as a possible successor although it belongs to another area.

F. Vehicle departure time scheduling

Since the BVs must travel a certain distance from the TD
to the point where it is planned to resume the operation of the
previous vehicle, a predictive scheduling must be performed
to determine the time in which the BVs should depart to
avoid harvesting operation interruptions. The BV departure
time is estimated based on the calculation of the time it takes
for the previous AV to reach the point where all its bins are
filled minus the time it will take for the BV to reach that

Fig. 5. Grid maps representing the vehicle route planning when: a) AV1 is
returning to the TD using local information from AV2; b) BV1 is resuming
A1 using updated global information; c-d) BV1-2 are resuming A3 using
non-updated global information.

point. The efficacy of the departure time calculation depends
on the information about the pickers harvesting rate and
expected yield per track which are estimated by the vehicles
during motion.

When the error between the expected and actual yield is
significant, then the point along the track where the bins
are expected to fill up is not reliable. In this situation, the
scheduler decides not to activate a BV for that area until
the AV returns to the TD and updates the global information
using local information. Figure 3 shows an example of this
situation, where it is expected that AV1 will not completely
harvest track 2 in the first run, thus, the backup vehicle (BV1)
should complete it. The latter does not happen since the error
between the expected and actual point where the bins got
filled differs significantly (indicated with magenta/blue stars),
therefore, the scheduler decides that BV1 does not activate
until AV1 returns to the TD and updates the global infor-
mation. Once the global information has been updated, the
harvesting sequence generated for the second run indicates
to BV1 that track 2 it should not be repeated because it was
already completed in the first run.

On the other hand, in the case of A3, the expected yield is
reliable enough for the scheduler to decide to activate the BV
departure time prediction in order to reduce non-productive
times. In this case, the harvesting sequence for the second
run is computed using global information that has not been
updated by the local information of AV3, since BV1 departs
before AV3 returns to the TD. In the case of the third run,
the harvesting sequence used by BV2 is generated without
considering the local information from BV1, but it does that
based on the local information from AV3.

IV. PRELIMINARY RESULTS

In order to evaluate the performance of the proposed route
planning strategy, a simulator of semi-automatic harvesting
operations was implemented in Matlab. Figure 6 shows
snapshots of the visual output generated by the simulator,



Fig. 6. Snapshots of the simulator after 50 min of harvesting the same field using 4 AVs with a) 4BVs b) 1 BV.

which depicts the field as a combination of Euclidean and
grid-based representations. The simulator has been developed
to be able to recreate and evaluate different scenarios,
which include variability in the machinery availability, field
length, yield density, harvesting rate, and communication
restrictions. For each time iteration, the simulator shows the
evolution of the tractors positions (colored circles) following
their route plans (colored lines). The fill color of the circles
and the tracks vary between grey or green according to
the harvested state of the track or the N-trailer load state.
The pickers are not shown in the visual output, but their
stochastic behavior was included by using a random variable
with normal distribution to generate a dynamic harvesting
rate. The simulation ends when all the tracks have been
covered, delivering metrics to qualify the harvesting oper-
ation efficiency. The metrics include pickers non-productive
time, the total time to complete harvesting operation, distance
traveled by the vehicles, and the number of times each
track was traversed. Figure 6 shows two illustrative examples
of the evolution of harvesting operations after 50 min of
being implemented the proposed route planning strategy.
These graphical results show the benefits of having enough
machinery availability to allocate one BV per each AV
(case a). This case produces fewer interruptions and thus
the pickers are able to cover more tracks in the same time
window than when the machinery availability limits the use
of a single BV for all the AVs (case b).

V. CONCLUSIONS

This paper described the use of multiple robotic N-trailer
vehicles to support the pickers during manual harvesting
operations. A high-level route planning strategy is proposed
to coordinate the vehicles departure times and generate
routes that optimize the use of the machinery available while
minimizes the total distance traveled, the total non-productive
time, and soil compaction. In order to robustify the approach,
the route planning is not completely centralized since routes
can be recalculated by any vehicle on motion according to
new information available about changes in the workspace.
Since it is a work in progress, it was shown only preliminary
simulation results that are planned to be completed in the
future work with extensive tests that evaluate the strategy in

different scenarios using the simulator. Finally, although the
strategy assumes the use of robotic vehicles, as a short-term
alternative, it could be implemented with manned vehicles,
where the harvesting sequence, departure times, number
of trailers, and vehicle routes computed can be used as
guidelines by the human operators and pickers.
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