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Abstract— Autonomous robots for challenging domains, for
instances transportation, agriculture, forestry and construction,
face several technical challenges inherent to their ability, or
lack of it, in operating under the unstructured, harsh and
dynamic nature of outdoor environments. This paper presents
preliminary results of system integration toward autonomous
navigation of a heavy-duty ground mobile robot designed for
such challenging outdoor domains. The main contribution of
this paper is to incorporate existing state-of-the-art Robot
Operating System (ROS) based algorithms for localization,
mapping, traversability, navigation, and exploration in real
world unknown and unstructured environments. This paper
focuses on assessing the localization and navigation ability of
the robot by using proposed methodology and evaluating it
under real-world outdoor tests.

I. INTRODUCTION

Some particularly challenging domains, for example,
transportation, agriculture, forestry and construction, have
been left nearly inhabited by robots [1], [2]. Yet, the de-
ployment of robots under these domains, here identified as
heavy-duty applications (HDA), seems inevitable. There has
been significant progress in the development and deployment
of unmanned outdoor robotics systems for those applications,
for instance autonomous vehicles, however, the required level
of automation still requires efficient solutions to various
technical challenges to be surmounted. Such as all terrain
locomotion capability, long-term and large-scale localization
under GPS denied environment, perception challenges due
to dynamic environment conditions, scene understanding,
autonomous navigation capability under complex terrain
morphology, and multiple vehicles cooperation for SLAM
and navigation. GPS has brought the localization problem
tractable, however, under partial sky visibility, due to clouds
or forest cover, the vehicle position estimate deteriorates.
Fusion of various vision, range, and inertial sensors provides
satisfactory results, however, their large-scale and long-term
estimates require further improvements for the demanding
field applications.

Fully autonomous driving capability is not only required
for intelligent vehicles on the road but also for machines
working in unstructured, dynamic, and harsh environments,
for instance in forestry. During the last few decades, damages
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due to wildfires have increased dramatically all over the
world and its impact can be seen in the economic stability
of many nations, and ecology and society in general [3].
The need to address this issue even in the face of increasing
rural abandonment and inadequate manpower brings forth the
opportunity of introducing robots to assist in both fire pre-
vention and firefighting applications. The SEMFIRE project
aims to solve these problems by developing autonomous
navigation capability for heavy-duty outdoor mobile robots
[4].

Despite many advances in key areas, the adoption of
fully autonomous driving robots for field applications is
still in an early stage. This stems from the navigational
challenges imposed by the unstructured setting presented by
the woodland environment, but also from limited perception
capabilities [5], and reasoning and planning under a high-
level of uncertainty [6]. Artificial perception for robots
operating in outdoor natural environments has been studied
for several decades. For robots operating in forest scenarios,
in particular, there is research dating from the late 80s-
early 90s – see, for example, [7]. Nevertheless, despite many
years of research, as described in surveys over time [8], a
substantial amount of problems has yet to be robustly solved.

Our solution for autonomous navigation in precision
forestry applications consists of a heterogeneous robotic
team for cooperative localization, mapping, and navigation.
The general framework composed of two types of robots:
the Ranger, a 4000 kg autonomous robot, based on the
Bobcat T190, equipped with a mechanical mulcher for forest

Fig. 1. SEMFIRE use case overview.



clearing; a swarm of Scouts, small UAVs equipped with
additional perceptual abilities to assist the ranger in its
efforts, as shown in Fig. 1. The Ranger will function as a
marsupial robot, as it can carry the swarm of Scouts via a
small trailer, while recharging their batteries.

The presented work focuses on the Ranger localization
and navigation capability without the assistance of scouts.
Implementation work is currently ongoing on the SEMFIRE
perception pipeline for the Ranger, namely the supporting
ROS-based framework, sensor drivers, semantic segmenta-
tion modules, and the registration. In the following section,
we shall describe some related works, proposed methodol-
ogy, real-world test results toward developing autonomous
navigation capability for the Ranger.

II. RELATED WORK

Localization and navigation in open and dynamic en-
vironments inherent to HDA is challenging due to the
intermittent availability of GPS, uneven topography and
difficult terrain traversability. Localization is the key for
mobile robotics. However, due to poor availability of GPS
and related technologies, autonomous robots have to rely on
other localization sources, for example wheel, inertial, visual
or range odometry. More importantly, autonomous vehicles
have to feature the ability to merge data coming from these
and other sources to robustly estimate their pose despite
dynamic environment conditions.

The research work [9] proposed a graph SLAM method
based on generalized iterative closest point matching tech-
nique for mining applications. The proposed solution takes
in to account the roadway planes as optimization constraints.
Another recent real-time LiDAR six Degree of Freedom
(DoF) odometry approach is presented in [10] for ground
vehicles. The proposed approach also leverages the presence
of a ground-plane in segmentation and optimization steps,
however, the proposed framework can be extended for un-
structured terrain by removing the ground plane constraints.

Google Cartographer is a state of the art real-time SLAM
solution, which can fuse information from multiple sensors
and provide a highly accurate robot pose estimation [11]
without environment feature constraints. This approach has
been widely deployed in several applications, including agri-
culture robotics [12]. Despite the promising results achieved
by Google Cartographer, as it relies on a graph-based SLAM,
it fails to properly generate the map whenever adjacent sub-
maps do not match as expected, thus inevitably leading to
localization errors.

Real-Time Appearance Based Mapping (RTAB-Map) is
an open-source Light Detection And Ranging (LiDAR) and
visual SLAM library for large-scale and long-term online
operation [13]. RTAB-Map can be adopted to provide visual
odometry from the depth images to feed other approaches,
including Google Cartographer. While RTAB-Map integrates
a memory efficient loop closure detection approach [14], it
suffers from the inability to properly handle rotations under
several situations [15].

Fig. 2. ROS system architecture overview.

In the research work [16] the author presented a navi-
gational approach for a heavy-duty wheeled mobile robot
for multiple agricultural applications. However, their naviga-
tional approach is limited to a planer environment and the
mapping is used only for visualization purposes.

The research work [17]–[19] presented an approach for a
quadruped robot autonomous navigation in complex outdoor
terrain. The proposed framework [17] is used to create
elevation maps, estimating traversability, and planning safe
and efficient paths in rough and unstructured terrain. The pro-
posed framework is centered around a single robot system.
However, the suggested approach is suitable for navigating
the ground vehicle in uneven topography.

Another important aspect for the autonomous navigation
of the ground robot in complex terrain is traversability.
Traversability is not only the property of the terrain but
also depends on the footprint of the platform. Wermelinger
et al. [17] proposed an approach to calculate terrain char-
acteristics, for instance slope, roughness and gaps to build
a traversability map. The traversability of the environment
can continuously vary between traversable, hardly traversable
and non-traversable locations. The proposed approach uses
an elevation map to assign each grid cell in the traversability
map a value between [0-1] considering neighboring cells.
One downside of the approach is that it fails to take in
account the traversability of the robot between upward and
downward slopes.

III. METHODOLOGY
Our autonomous navigation strategy consists of, first ro-

bust localization and then mapping of the unstructured out-
door environment followed by estimating the traversability of



the terrain and then exploration. The inputs to the processing
pipeline are front and rear 3D LiDAR point clouds, robot
attitude and inertial measurements from an Inertial Measure-
ment Unit (IMU), and RGB-D camera images from a front
facing depth camera. These sensor measurements are fed to
various components of the autonomous navigation system.
Fig. 2 shows the overview of the proposed methodology.

The first stage of the processing pipeline is a point
clouds fusion node. This node simplifies the process of
inserting multiple point clouds to the elevation mapping and
traversability estimation process. It also reduces the compu-
tational load by removing points in the overlapping region
of the two point clouds. The front and rear point clouds
are transformed from their respective coordinate frames into
the robot coordinate frame. Furthermore, a voxel filter is
used to down-sample the point cloud to 0.2 cm/voxel and
removes points above and below 3 m with respect to the robot
coordinate frame’s z-axis. The voxel filter size and height
threshold are selected considering the computational load.
The resolution of the elevation, traversability, and navigation
cost maps are also equal to the voxel size.

The localization system relies on one RGB-D sensor,
one IMU and two LiDARs. For the robust localization of
the robot, cartographer [11] is adopted. The cartographer is
selected because it can perform range odometry using point
clouds and it can fuse the odometry from multiple sources.
Fused point clouds are used internally to perform the range
odometry using scan matching technique. The robot visual
odometry is performed by the RTAB-map package [13],
which uses Intel Real-sense RGB-D depth camera images
and a feature-matching approach. The RGB-D sensor outputs
a stream of depth images which are fed to RTABMap.
RTABMap performs the visual odometry and provides an
estimation of the robot pose. However, the output pose needs
to be filtered in order to remove invalid robot orientations.
The fusion of the range and visual odometry are comple-
mentary to each other due to different sensor modalities. The
cartographer provides the 3D robot pose by using fused point
clouds, inertial measurements and visual odometry. The IMU
is placed inside the sensing kit mounted on the top of the
robot. The cartographer uses the IMU frame for tracking
purposes, therefore, the IMU measurements are transformed
from the IMU frame to the robot coordinate frame to provide
odometry with respect to the robot frame. The cartographer
uses IMU measurements to determine the gravity vector to
estimate the correct robot pose using Structure from Motion
(SfM) algorithm [20].

In order to determine the traversability of the robot on
uneven 3D terrain for navigation purposes, elevation map-
ping [21] has been adopted. The fused 3D pose provided by
the cartographer is fed to the elevation map and a velocity
estimator node. An elevation map can be considered as a
2.5D map. Each grid cell is assumed to contain a height
field which represents the height of the obstacle at that grid
cell. One downside of using an elevation map compared to
the 3D voxel map is that it approximates all the vertical space
above the grid cell using one height values, therefore, if there

is a bridge like structure present at some location, the empty
space within the object can not be correctly represented. For
the Scouts, a 3D voxel map is more appropriate for path
planning, however, for the ground robot elevation map is suf-
ficient to determine robot traversability. The ROS elevation
mapping package is adopted to create a 40m×40m elevation
map. The size of the map is selected considering overall
computational requirements. The elevation mapping node
outputs two elevation maps, a raw and a filtered elevation
map.

The traversability estimation process requires an elevation
map, therefore, the filtered elevation map is used to estimate
the traversable spaces [18] for the robot in complex 3D
terrain as shown in Fig. 3. It also takes in account the
robot 2D footprint information while estimating traversable
regions. The estimated traversability cost-map is a 2D cost-
map which is calculated by a weighted average of three
different 2D cost-maps, namely, slope, step and roughness
cost-map. The slope map is used to determine the slope at
each grid cell within a circular vicinity of the robot. The
roughness map is determined by calculating entropy within
a circular region around the robot. The step map uses the
maximum traversable gap width information to determine
the step cost-map.

The traversable cost-map is used to identify frontiers for
the robot exploration. For exploration, [22] proposed Rapidly
Exploring Random Trees (RRT-Exploration). The proposed
framework is designed to be modular, therefore, it can be
used by a Multi-Robot System (MRS). It consists of four
main components, a global frontier detector, local frontiers
detectors in-case of MRS, a filter for pruning old, redundant
and invalid frontiers, and the assigner node to send goals
for robot navigation. The user specifies a four-point polygon
region for exploration on the global traversable cost-map
which is passed to global and local frontiers detectors. In
the case of a single robot, only a global frontier node can be
used. In case of a MRS, each robot uses its local frontiers
detector and publishes the frontiers position information on a
frontier topic. The frontiers filter process clusters and remove
the duplicate and old frontiers received from global and local
detectors. The assigner process is used to assign the optimal
frontier as a goal to the available robot. The assignment
strategy is modified to select the frontier with maximum
information gain taking into account the robot position and
orientation.

J(x f ) =λ1h(x f ,xr)I(x f )−λ2||x f − xr||−
λ3atan2(xr,y− x f ,y,xr,x− x f ,x)

(1)

Where x f is the frontier position, xr is the robot position,
λ1,2,3 are the weights, I(x f ) is the information gain, and
h(x f ,xr) is the hysteresis gain.

For the robot close-loop velocity control, a velocity es-
timator node is implemented to calculate robot linear and
angular velocity using the cartographer estimated 3D pose.
Before sending the estimated velocities to the low-level PID
velocity controller, they are filtered using a low-pass filter
to remove the noise due to numerical differentiation. The



output of the velocity controller are sent to the Ranger CAN
bus for the actual track motion. The ROS navigation [23]
framework is configured to us A* [24] as a global planner
on the traversability cost-map and Time Elastic Band (TEB)
[25], [26] as a motion planner on a local cost-map. For
the obstacle avoidance purpose, Spatio-Temporal Voxel layer
(STVL) [27] is used to update the local cost-map. There are
two recovery behaviors in the navigation architecture. The
first behavior is to clear the local costmap with the same
data as the global costmap and the second behavior is to
perform a 360 degrees in-place rotation. If both behaviors
are exhausted, the robot stays still and waits for a new goal
location.

In order to evaluate the proposed methodology on the
real-robot, the processing pipeline is first tested on a Unity
based simulator designed for a 3D forest like environment,
as shown in the Fig. 3. To assess the performance of the
overall system following Key Performance Indicators (KPI)
are defined.
• Localization failure rate (loss of position estimate).
• Navigation failure rate (inability to move).
• Ratio between robot operation time and human opera-

tion time.
• Number of times the robot fell back to human control

in difficult situations.
The localization error is defined as follows:

εloc = |
√

Ploc−Pgps| (2)

Where Ploc is the position of the robot reported by the
localization system and Pgps is the position of the robot
reported by the RTK-GPS. The localization failure is defined
as follows:

εloc, f ail =

{
1 if |εloc,t − εloc,t−1|> 1m
0 otherwise

(3)

The localization failure rate is determined by comparing
the estimated robot position provided by the cartographer
and the robot position provided by the GPS during the
experiment.

For the assessment of navigation failure rate, navigation
failure is defined as follows:

εnav, f ail =

{
1 if |dgoal−dtravel |< 1m and t ≥ 60sec
0 otherwise

(4)

Fig. 3. Left: RRT-exploration using traversability cost-map, Right: Unity
simulator.

Fig. 4. Traversability estimation.

where dgoal = |
√

Ploc−Pgoal | and dtravel = |
√

Ploc−Pprev|.
The navigation failure rate is assessed by considering that
the robot was unable to move out of a circular region of one
meter radius during a time window of 60 seconds.

IV. REAL-WORLD TEST

Two experiments were conducted in the outdoor parking
area near the railway tracks near Ingeniarius, Ltd. head-
quarter on a cloudy day in the afternoon as shown in
Fig.5. The objective of the real-world tests were to assess
the localization and navigation failure rate of the complete
robotic system. The experimentation area was approximately
40 m by 10 m in size. The ROS bags of the experiment were
recorded and available in the public domain for downloading
[28]. Due to the limited area and large detection range of
the LiDARs the exploration package was only tested in
the simulation as shown in Fig. 3. The blue lines in the
Fig. 3 shows the randomly explored nodes, while the green
points represent the filtered frontiers to be explored by the
robot. The three cost-maps used to estimate traversability
are assigned equal weights. The resolutions for the global
and local cost-map are set to 0.2 m/grid cell, similar to the
elevation map.

All the Ranger system software components executed
on ROS Melodic, Ubuntu 18.04 (Bionic Beaver), and is

Fig. 5. Ranger operation during outdoor long-term localization and
navigation experiment.



supported on the Ranger by the following computational
resources: (1) a Mini-ITX computer equipped with a Geforce
RTX 2060, an Intel Core i7-8700 CPU and 16 GB of DDR4
RAM; (2) a Tulipp FPGA+ARM Platform including a Xilinx
XCZU4EV TE0820 FPGA and an ARM Quad-core Cortex-
A53 CPU with a Mali-400 GPU. The Ranger is equipped
with a sensor kit that includes Intel Real-sense 435i cameras
(RGB-D+NIR sensors), a FLIR AX8 thermal camera, a
Teledyne Dalsa Genie Nano C2420 multi-spectral camera,
an UM7 IMU, an Emlid Reach RS2 RTK-GPS, and two
LeiShen C16 Laser Range Finders. Fig. 5 shows the Ranger
with front LiDAR and the sensing-kit on top of the robot.
The low-level PID based velocity controllers for the ranger
are implemented on an Arduino Mega2560.

To test the localization system accuracy, a RTK-GPS
system was set-up before the experiments as shown in Fig. 5.
The RTK base station was set up and configured to acquire
measurements for 30 minutes in order to provide GPS fix
status. The localization experiment was an hour long during
which the robot was tele-operated to visit Geo-referenced
way-points. During the second experiment the robot nav-
igated autonomously for half hour to user assigned goals
through ROS Rviz. The robot was given a new goal location
whenever it reached near the previously sent goal. Thirty-six
goals were sent in total to the robot during the navigation
experiment. To assess the autonomy of the robot, an operator
with the remote control was present all the time present in
case of emergency or navigation failure situation. The goals
sent along with the estimated trajectory is shown on the
cartographer generated 2D map, Fig. 6, for the reference
purpose.

V. RESULTS

Fig. 7 shows the result of the localization experiment.
The ground truth robot trajectory is captured using the
RTK GPS. During the experiment the RTK-GPS signals
appear to be unreliable and switching between float and fix
status, therefore, only the acquisitions with the fix status
are used for further analysis. Due to this reason, for future
experiments, Ultra Wide Band (UWB) positioning systems
shall be employed for localization error assessment. The top
graph in Fig. 7 shows both GPS and cartographer trajectories
overlaid on each other. The GPS coordinates are converted

Fig. 6. Robot trajectory along with the goals locations on the occupancy
grid map

Fig. 7. Localization accuracy assessment. Top figure shows GPS and
Localization system trajectories. Bottom figure shows the localization error
over time.

Fig. 8. Navigation failure rate.

from geodetic to Cartesian coordinate with respect to the first
GPS measurement. The localization trajectory is translated
and rotated manually in order to provide a visual match. The
bottom graph of Fig. 7 shows the Euclidean distance between
the corresponding GPS and localization system reported po-
sition. The localization reported by the cartographer appears
to drifting over time. The sudden increases in the distance
corresponds to the localization error.

Fig. 8 shows the result from the navigation experiment.
The red line shows the Euclidean distance of the goal
position from the current robot position, while the green
line shows the distance traveled by the robot from the robot
pose when a correct goal pose is received. For example,
during the start of the experiment, the first goal was sent at
t = 51sec which is 7.5 m away and, therefore, the distance
traveled started increasing as the robot moved towards the
goal. A new goal was sent 25 sec after the previous goal,
being this one 6 m away from the robot, thus resetting
the distance covered to zero. It can be observed that at
t = 1650sec the robot appears to be stuck for about 100
seconds. It is noteworthy that the robot was able to move to
a new goal location without the help of the remote operator.
During the 30 minutes navigation experiment, the remote



operator intervention was not required. However, considering
the navigation failure rate KPI defined in Eq. 4, it did fail
once.

VI. CONCLUSIONS

This paper presented integration of various ROS based
robotic components for localization, mapping, traversability,
navigation and exploration of a tracked mobile robot for
forestry applications. The integrated system was tested in
both simulation and real-world experimentation and the
results are presented. Furthermore, both the localization
and navigational failure KPIs are defined and evaluated.
Regarding localization and navigation ground truth, the RTK-
GPS accuracy is dependent on weather conditions among
other physical properties of the environment. Therefore, for
future experiments, we shall also employ the UWB setup for
ground truth estimation in addition to RTK-GPS. In future
the proposed processing pipeline shall be extended toward a
MRS.
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